RF Breakdown of 805 MHz Cavities in Strong Magnetic Fields

Daniel Bowring

APT Seminar, April 30, 2015

Talk overview

- 1. Background material on ionization cooling, RF breakdown
- 2. Introduction to Fermilab's MuCool Test Area
- 3. A model of RF breakdown in strong magnetic fields
- Operational experience with normal-conducting cavities for ionization cooling R&D at the MTA
- 5. Current status and future plans

Overview of muon ionization cooling

http://mice.iit.edu/

- Absorbers isotropically attenuate muon momenta
- Longitudinal momentum replaced by RF cavities
- Focusing via solenoids
- ► Ionization cooling R&D at Fermilab indicates multi-Tesla magnetic fields increase the rate and extent of RF breakdown in Cu cavities.

Overview of RF breakdown

- ► A century-old problem affecting many RF structures
- Sudden, picosecond-scale discharge of cavity stored energy
- Spike in vacuum pressure
- Arc discharge causes damage, limit cavity gradients, luminosities, etc.

Cavity pickup probe voltage, reflected power from directional coupler, optical fiber → PMT. Left column is a normal RF pulse, right column is a breakdown event.

We have a model that describes the influence of magnetic fields on RF breakdown rates.

- D. Stratakis, et al., NIMA 620, 2010, pp147-154.
- ► Field emission current focused by solenoid into "beamlet".
- Beamlet persists, leading to surface failure.

 ΔT_d here is the temperature rise required for the onset of local plastic deformation.

We have a model that describes the influence of magnetic fields on RF breakdown rates.

- D. Stratakis, et al., NIMA 620, 2010, pp147-154.
- ► Field emission current focused by solenoid into "beamlet".
- Beamlet persists, leading to surface failure.

Mitigation Options

- Surface polishing and cleaning reduces field emitter sites.
- Beamlets deposit less energy in materials w/ long radiation lengths.
- Less plastic deformation for harder materials.

There is experimental support for this model.

- ► At Fermilab, we have tested several cavities at the MuCool Test Area (MTA). These exhibit breakdown behavior consistent with the model described above.
- ▶ We'll discuss the MTA next, and the relevant work that has been taking place there.

A brief introduction to the MTA

- ► 400 MeV H⁻ linac beam, 7.5 × 10¹² max particles/pulse
- RF power: 12 MW @ 805 MHz, 4.5 MW @ 201 MHz
- ▶ 5 T solenoid, 44 cm ID
- Portable clean room
- DAQ, control workstation in Linac gallery

Results from 2+3 cavities are reported here.

"All-Seasons" Cavity

- Built by Muons, Inc.
- Vacuum or high-pressure gas capability
- Cu-plated stainless
- ▶ 810 MHz, 14.5 cm gap length

Pillbox w/ grid windows

- Grid windows ease pulsed heating effects.
- Cu or grid walls
- ► 800-805 MHz, 8.1 cm gap

MICE prototype

- ▶ 201 MHz
- SRF-style surface prep.
- Conditioned to design gradient w/ no sparks.

Model vs experimental results

- ▶ Data from pillbox cavity with 2 grid windows, with 1 grid + 1 Cu wall, and with 2 Cu walls.
- Black line indicates threshold for plastic deformation from cyclic beamlet heating.
- ► Fit quality affected by conditioning history, coupler effects.

Breakdown probabilities affected by electric field enhancement at couplers.

Simulations of $\it E$ -field distribution using SLAC's ACE3P code suite.

Improved control over systematics with new cavity.

Design focuses breakdown on walls, not coupler.

(Top) Old 805 MHz cavity *E*-field. (Bottom) Modular cavity.

Multipacting optimized for 0 < B < 5 T.

ACE3P-simulate MP trajectories for B=0 (top) and B=3 T (bottom).

Removable end walls for inspection, materials studies.

SRF-style surface prep.

12 / 15

The modular cavity is now running in the MTA.

- \sim 2M pulses collected at B=0
- Commissioned up to 30 MV/m with minimal sparking.
- Gradient currently limited by anomalous klystron behavior, not fundamental breakdown rates.

Planned work for the modular cavity

- 1. Resurface, polish plates between runs to control for conditioning history.
- 2. Determine maximum achievable gradient up to B=5 Tesla.
- 3. Measure spark rate at constant gradient over many millions of pulses at B>0 to evaluate "surface lifetime".
- 4. Replace Cu walls with Be to study beamlet pulsed heating.
- 5. Beam tests are possible with Be walls.

Thanks for your attention.

Thanks to everyone who contributed to this research: **FNAL:** A. Kochemirovskiy, M.

Leonova, A. Moretti

M. Palmer, D. Peterson, K. Yonehara

IIT: B. Freemire, P. Lane, Y.

Torun

BNL: D. Stratakis

SLAC: A. Haase